NASA Technical Memorandum 107377

Accurate Finite Difference Algorithms

John W. Goodrich
Lewis Research Center
Cleveland, Ohio

Prepared for the

Barriers and Challenges in Computational Fluid Dynamics Workshop
sponsored by the Institute for Computer Applications in Science

and Engineering and NASA Langley Research Center

Hampton, Virginia, August 5-7, 1996

National Aeronautics and
Space Administration






ACCURATE FINITE DIFFERENCE ALGORITHMS

JOHN W. GOODRICH
NASA Lewss Research Center
Cleveland, OH 44135, USA

1. Introduction

Clear examples of the difficulties associated with applying CFD techniques to ap-
parently simple problems are provided by computational aeroacoustics and compu-
tational electromagnetics. These applications require accurate wave propagation
over long distances for a wide range of frequencies, placing a severe demand on
numerical algorithms, and raising issues related to efficiency, accuracy, compatible
space and time treatments, high frequency data, propagation along character-
istic surfaces, isotropy, stable and accurate artificial boundary treatments, and
nonrestrictive stability bounds. This paper briefly presents two methods for the
development of finite difference algorithms which are intended to address these
issues. High order single step explicit algorithms are possible, and examples with
up to eleventh order accuracy will be shown. High resolution algorithms in the
sense of [9] are also possible, with amplification factor and relative phase change
per time step which are virtually 1 for normal mode frequencies in [0, 7] and CFL
numbers in [0,1]. ¥ our most accurate algorithm is used to propagate an initial
periodic sine wave, then after five periods with four grid points per wavelength,
the maximum error is O[10%], and after five hundred thousand periods with eight
grid points per wavelength, the maximum error is O[10~*]. High order algorithms
are relatively more efficient [7], and their relative efficiency tends to increase as
the error bound decreases, as the simulation time increases, and as the spatial
dimension increases. Our algorithms show several orders of magnitude difference
in the number of multiplications required to meet an error bound of O[1074] at
five periods of propagation. Applied computations require boundary conditions.
A new artifical boundary condition that has been developed by Hagstrom [5] will
be shown for the linearized Euler equations. This boundary condition is local in
time and does not require information about the distance or direction of either an
assumed source or an expanding wave front. The boundary and propagation al-
gorithms have a consistent derivation and similar properties [4]. Additional issues
are raised by shocks, but are not addressed here.

2. Algorithms for the Linearized Euler Equations in 1D

As a first example we will consider the linearized Euler equations in one space
dimension. The equations for the isentropic case can be written in nondimension-
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alized form as the system

g Ve Y
o0 , 00, Bu _
at+Ma . 0,

where M is the constant mean convection Mach number, p is the disturbance
pressure, and u is the disturbance velocity. System (1) can be diagonalized and
solved by the method of characteristics to produce the general solution

u(z,t) =%(ui(z — (M +1)t) + pi(z — (M + 1)1))
+3(wi(e = (M —1)2) - pi(z - (M - 1)),
oz, 1) =-;-(pi(z — (M + 1)t) + ui(z — (M + 1)1))

+%(pi(z — (M = 1)t) — ui(z - (M — 1)t)),

with intial data ui(z) = u(z,0), and pi(z) = p(z,0).
The first step in producing algorithms for solutions of (1) is to locally inter-
polate u and p at ¢,, with order D polynomials in z:

D D

u(z; + z,t,) X ua(z) = Z uez®, p(zi+2z,tp) = pa(z) = Zpaz". (3)
a=0 a=0

The expansion coeflicients are obtained by the Method of Undetermined Coefhi-

cients using the known data on a given stencil. Note that there is no specification

of a particular mesh or data type, and that separate derivative terms are not even

considered. The use of single interpolation polynomials of order D is equivalent

to simultaneously approximating derivatives up to the D** order, with

13%a  10% 1 8°pa 18%p

Ya = 1 9z% © ol 8z and pe = a! 0z ~ ol 8z* (4)

The local interpolations (3) to u and p at time ¢,, are used as initial data for the
exact solution (2), producing an approximate local solution

u(zi + 2y ta +1) z%(ua(z — (M +1)t) + pa(z — (M + 1)t))
+5(ualz ~ (M~ 1)t) ~ pa(z — (M ~ 1)) o
PTi + 2, tn +1) z-;—(pa(z _ (M +1)t) + ua(z — (M + 1)8))
+5(palz — (M — 1)t) - ualz — (M ~ 1)1)).

2



The approximate local solution (5) is a function of z and ¢, and it is an exact
solution to (1) with the local interpolants (3) as initial data, so that (5) is an
exact local propagator for (1) and correctly incorporates the dynamics of (1). The
fundamental viewpoint of this method is to approximate the solution of the system
instead of particular terms in the governing equations. This fundamental idea is
seen in the use of Riemann solvers for problems with shocks [2], and in the use
of local Fourier decompositions and separation of variables to develop algorithms
for a wide variety of problems [1]. The approximate local solution (5) is used to
obtain a computational algorithm at the stencil center, with

u(ziytn + ) & 0 = L(ua(~(M + 1)E) + pa(~(M +1)K))
+ 3 (ua(~(M — 1)k) = pa(~(M = 1)¥),
plzistn + k) % T+ = 3(pa(—(M +1)F) + ua(~(M + 1)E))

+ 3(pa(~(M — 1)k) = ua(~(M — 1)E)).

(6)

Algorithm (6) uses the exact local propagator (5) with approximate local data (3),
so that the time evolution introduces no new error, but merely propagates what
has been introduced by the interpolation. Note that finite difference forms are
not specified, and that (6) represents a family of algorithms dependant upon the
interpolant (3). If order D interpolants are used for a particular realization of (6),
then the algorithm will have accuracy of order D in both space and time. There
are several interpretations of algorithm (6). It may be viewed as an application of
the Method of Characteristics, since in this case, the general solution form for the
exact local propagator is obtaind by this method. If the interpolation expansion
coefficients are viewed as spatial derivatives (4), then the local solution in space
and time (5) can be viewed as a Cauchy-Kowaleskaya expansion. The algorithm
can also be reformulated as a truncated Taylor series expansion in the time step
size k, with

uft! =ug — k(py + Muy) + K (2Mp; + (M? + 1)u;)
— (14 3M%)p3 + M(3+ M*)u3) +...,

P! =py — k(uy + Mp1) + E2(2Mu; + (M? + 1)p,)
— B} ((1+3M%)u3 + M3+ M%)p3) +...,

(7)

where the grid ratio A = £ is implicit in (7), since the coefficients u, and p,
include the factor A~ for space step size h. A truncated Taylor expansion in time
can be viewed as a generalized Lax-Wendroff method [8]. Algorithm (6) can also
be reformulated as a conventional finite difference method, since the underlying
spatial interpolations use local polynomials. Further details are in [3].
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We will introduce four relatively conventional realizations of algorithm (6),
with central stencils for the interpolants (3), and with values for u and p at each
grid point. These algorithms have three, five, seven, and nine point central sten-
cils, they are second, fourth, sixth, and eighth order accurate in both space and
time, and they are refered to as the "c300ex,” "c5o0ex,” ”c7olex,” and ”c9o0ex”
methods, respectively. These four algorithms are all single step explicit methods
with dispersive truncation errors, and each is stable for § < iy7. Grid refinement
data for these algorithms is presented in Figure 1, confirming the order of accuracy
of each of the four methods. This grid refinement data is discussed in more detail
with data from an additional class of high resolution Hermitian methods that are
introduced below.

Stable high order boundary treatments can be derived if these algorithms are
viewed as Cauchy-Kowaleskaya expansions. The interpolant from the data on a
single stencil next to a boundary is used as initial data for the approximation
of the evolution of the solution over the interval from the stencil center to the
boundary point. Values for u and p are computed at each grid point that is not
on the boundary in this interval, and outgoing Riemann variables are computed
at the boundary point. The boundary treatment for the c9o0ex method must be
modified for stability, and it uses a truncated eight point boundary stencil with
additional data at the boundary point. Table 1 presents results for a simulation
with inital data u(z,0) = 0 and p(z,0) = Sin(xz), for —1 < z < 1, with A = 0.8
and M = 0. For the boundary treatment, u+p is computed at the z = 1 boundary,
u — p is computed at the z = —1 boundary, and typical CFD boundary conditions
are imposed, with u(—1,t) and p(1,t) given. The data in Table 1 shows that the
propagation algorithms and boundary treatments are stable with from second to
eighth order accuracy in both time and space. Further details are in [3].

TABLE 1: Data From Explicit Algorithms with Boundary Treatments
Maximum Error in u or p at £t = 10

2 n10 c3d0ex c5d0ex c7d0ex c9dlex
8 50 1.87D-01 1.17D-02 1.01D-02 8.65D-05
16 100 4.57D-02 9.98D-04 5.26D-05 8.50D-07
32 200 1.32D-02 8.11D-05 8.79D-07 4.69D-09
64 400 3.50D-03 5.54D-06 1.29D-08 2.09D-11
128 800 8.94D-04 3.58D-07 1.89D-10 3.75D-13
256 1600 2.25D-04 2.27D-08 3.35D-12 4.91D-13
512 3200 5.66D-05 1.43D-09 1.89D-12

1024 6400 1.42D-05 9.12D-11

3. Hermitian Algorithms

We will introduce a second family of algorithms for (1), which use the exact lo-
cal propagator (5), but which are distinguished from the relatively conventional
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algorithms introduced above by the use of Hermitian interpolants for (3). This
particular family of algorithms uses and computes values for 4 and p, and for
their spatial derivatives. Various orders of spatial derivative data are required
at each grid point, depending upon the particular algorithm. If these algorithms
are viewed as approximate local solutions for u and p, or as Cauchy-Kowaleskaya
expansions that are locally defined as functions of z and t, then they can be
differentiated in z to provide local solutions for the spatial derivatives that are
consistent with the solutions for u and p. The local derivative solutions obtained
by differentiating (5) in z are used to obtain computational forms for the spatial
derivatives that are analogous to and consistent with the computational forms (6)
for u and p. These forms may be expressed as Taylor series time expansions in k,
with
uz?*! =u; — 2k(p; + Muz) + 3k*(2Mp; + (M? + 1)u;)
— 4k (1 +3M%)py + M3+ M*)uy) +...,
pzt! =p; — 2k(uz + Mp3) + 3k*(2Muz + (M? +1)p3)
- 4k3((1 4+ 3M)u, + M(3+ M¥)p) + ...,

and with similar forms for second and higher derivatives. The interpolation step
for the Hermitian algorithms only produces interpolants (3) for the functions u
and p, using local polynomial approximations and the Method of Undetermined
Coeflicients with all of the data at each grid point on a given stencil. Note that
there is no separate consideration given to interpolation or propagation for the
derivative data.

Hermitian algorithms with central stencils have stability problems if the max-
imum order of accuracy is obtained. Stable algorithms with exact propagators can
be obtained on alternating grids offset by a half mesh width. We will introduce
four algorithms which use staggered two point grids, and three algorithms which
use staggered four point grids. On staggered two point grids, if just u and p are
used, then a first order exact propagator algorithm is obtained, which we will de-
note by ”c300s2.” If up to first, second, or third derivatives are used in addition to
u and p, then stable algorithms are obtained which are third, fifth, or seventh order
accurate in space and time, referred to as the "c301s2,” ”c302s2,” and ”c303s2”
methods, respectively. On staggered four point grids, if just u and p are used,
then a third order exact propagator algorithm is obtained, which we will denote
by ”c500s2.” If up to first or second derivatives are used in addition to u and p,
then stable algorithms are obtained that are seventh or eleventh order accurate in
space and time, referred to as the "c5o01s2,” and ”c502s2” methods, respectively.
These seven algorithms are all single step explicit methods on staggered grids with
diffusive truncation errors, and each is stable for f < ﬁﬂ, where the staggered
half step size is % Note that two half time steps can be composed to produce
single step algorithms with time step size k. The full time step algorithms result-
ing from staggered two point grids can be formulated as single step methods on a

(8
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central three point stencil, and the algorithms from staggered four point grids as
single step methods on a central seven point stencil. Other combinations are pos-
sible, such as composing the c303s2 and c501s2 methods, to produce a single step
explicit seventh order Hermitian method on a single central five point stencil. It
will be shown below that some of these Hermitian algorithms have extraordinary
resolution and accuracy.

4. Numerical Experiments with the 1D Algorithms

Numerical experiments will be conducted with the eleven algorithms that have
been introduced above, by computing solutions to (1) with inital data u(z,0) =0
and p(z,0) = Sin(xz) for —1 < z < 1, and with A = 0.8 and M = 0. Periodic
boundaries will be imposed, with p(—1,t) = p(1,t) and u(—1,¢t) = u(1,t) for 0 < t.
Note that the initial data has wavelength and period 2. Figure 1 shows the logio
of the maximum absolute error at ¢ = 10 in u or p versus the log; of the number
of grid points per wavelength. This data corroborates the order of accuracy of
each of the methods. Note that the first order c300s2 method is incapable of
producing accurate results with any reasonable resolution, and that the second
order c3o00ex or Lax-Wendroff method requires 64 grid points per wavelength to
produce O[10~2] accuracy after five periods. Note also that the c700ex and c9o0ex
central methods show a greater sensitivity to roundoff errors than the high order
Hermitian methods. An interesting feature of Figure 1 is the data at the coarsest
resolution, with 4 grid points per wavelength. At this resolution, the simulations
with the c302s2, ¢303s2, c501s2 and c502s2 algorithms have errors that range from
O[1072] to O[107], in contrast with errors that range from O[1] to 0[107?)] for
the other algorithms. An O[107%] error after five periods of propagation with
four grid points per wavelength is exceptionally high resolution. Notice also the
relative errors from methods which are of similar order. The c500s2 and c301s2
algorithms are both third order, but the c3ols2 algorithm produces lower errors
by about one order of magnitude at each grid resolution. The c501s2 and c303s2
algorithms are both seventh order, but the c303s2 algorithm produces lower errors
by about two orders of magnitude at each grid resolution. The conventional sixth
order c7o0ex and eighth order c9o0ex methods have larger errors at each grid
level than the fifth order c302s2 and seventh order c501s2 Hermitian methods,
respectively. In these comparisons of algorithms with similar orders of accuracy,
the algorithm which produces lower errors has higher resolution from using more
derivative information at each grid point. The accuracy of a numerical algorithm
is determined by both its order of accuracy and its resolving power.

The periodic problem which produces Figure 1 is also used for propagation
with 8 grid points per wavelength out to ¢ = 10, ¢ = 1,000, and ¢ = 100, 000.
The data is presented in Table 2, where O[1] errors are marked by asterisks, and
where the algorithms are ranked by order. Note in Table 2 for ¢t = 10, that the
error data from the sixth order c7o0ex method is two orders of magnitude higher
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than from the fifth order c302s2 method, and that the error from the eighth
order c9o0ex method is two orders of magnitude higher than from the seventh
order c501s2 method, and four orders of magnitude higher than from the seventh
order ¢303s2 method. A similar comparison is also seen in Table 2 for the data
from ¢ = 1,000 and ¢ = 100,000. These comparisons once again show that both
the order of accuracy and the resolution of a numerical algorithm determine its
accuracy. Note that the only algorithms which produce errors that are not O[1]
at ¢ = 100,000 are the high order and high resolution c501s2, c303s2 and c502s2
methods. These results also show that far.field may be redefined by several orders
of magnitude, and that efficient propagation to a truly far field requires methods
which are both high order and high resolution.

TABLE 2: Long Time Simulations For Each Algorithm
Maximum Error in u or p at Various Times

Method  Order t=10 t=1,000 t= 100,000

c300s2 1 HRERRRRE  RRERREKE  RkkbRRRE
c3o0ex 2 6.76D-01 FHEFEERE  AEEEEERE
50052 3 0.40D-(1 FEEEEEEE  krkEEEEE
c3ols? 3 3.07D-02 *HEEEEEE  REkecEs
c5o0ex 4 9.14D-02 6.74D-01 ¥**¥eekx
c302s2 5 2.27D-04 2.26D-02 **¥rrEEx
c700ex 6 1.11D-02 1.04D-01 *¥¥¥¥exx
cS5ols2 7 4.52D-05 4.55D-03 3.75D-01
c303s2 7 6.74D-07 6.78D-05 6.75D-03
c9o0ex 8 1.39D-03 1.38D-02 **ekaex
c502s2 11 9.33D-10 9.37D-08 9.37D-06

The superior accuracy of the high order and high resolution methods is ob-
tained by using more complex algorithms, with more variables and equations, and
with more operations per grid point per time step. It is natural to ask wether
or not the simpler, more conventional algorithms are more or less efficient than
the Hermitian algorithms. We will address this issue by replotting the data from
Figure 1, this time with the log,o of the maximum error at ¢ = 10 on the vertical
axis, and the log,, of the total number of multiplications required for the entire
simulation out to t = 10 on the horizontal axis. This data is presented in Figure
2. It has been shown in [7] that relative computational efficiency increases with
order of accuracy, and that the relative efficiency increase as the error tolerance is
lowered, and as the simulation time is increased. The data in Figure 2 from our
methods clearly shows that for every level of error the efficiency in meeting that
error tolerance increases with the order of accuracy of the algorithm, in spite of
the fact that algorithms of radically different type are being used. In particular,
the Hermitian algorithms not only use more degrees of freedom of data in order to
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increase order of accuracy, but they also solve more equations for more variables,
and yet they are still more efficient than the less accurate algorithms.

5. Normal Mode Analysis in 1D

The special properties of the full discretization Hermitian algorithms can be shown
by a normal mode analysis. We will consider Hermitian algorithms applied to the
linear first order wave equation

Ou Ou
N +M %= 0. (9)
The local exact propagator is defined by the Method of Characteristics. A normal

mode for (9) can be written in local coordinates as

u(z,t) = aEXP[9(z Mt)], (10)

with amplitude o, frequency 8 € [0 x], and with space mesh size h. The symbol
p for the algorithm can be written in terms of the normal mode (10), with

un+l

p(X,0) = (11)

where u™1! is obtained from the algonthm with the normal mode u™ as the known
solution at i,, and where A = -‘-’— is the CFL number. Spatial derivative data
is needed by the Hermitian algonthms at each grid point, and since the normal
mode (10) is perfectly known as a function of z at ta, we will smply take and
use its derivative values for this data. This heuristic procedure is intended to
obtain qualitative insights about the algorithms, and is not intended as a rigourous
stability analysis, which would treat the total system of u and its spatial derivatives
with independant error modes expected in each. From (11) we obtain the norm

’

u® ’

1600, O]l = (Relof? + Im[p)?, (12)
and the phase change per time step
_1;_Relp]
pel3,6) = Co I, o (13

Note that we have varied from [10] by using a definition of phase change in terms
of Cos™! rather than Tan™!. For the phase speed properties of an algorithm, we
will use the normalized relative phase change per time step

r7o00) = 550 @
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rather than the phase change per time step (13).

All of the Hermitian methods with two point staggered grids were applied to
the wave equation (9), and single step forms of the algorithms were obtained on
three point central stencils. The norm of the amplification factor (12) and the
relative phase change per time step (14) of these sxngle step algorithm forms have
been obtained numerically from an analytical expression. The most accurate of
these four methods is the seventh order high resolution c303s2 algorithm, which
uses u and its first through third spatial derivative at every grid point. The norm
of the amplification factor (12) for the c303s2 algorithm is plotted in Figure 3(a)
as a function of the wave number 8 € [0, 7] and the CFL number A € [0,1]. Note
that Flg'ure 3(a) shows the norm of the amplification factor as less than or equal
to 1 in the specified parameter range. The most dissipated behaviour is in the
limit at # = 7, and the norm of the amplification factor at § = x is plotted as
a function of ) in Figure 3(b). Figure 3(b) shows the norm of the amplification
factor varying between approximately 0.9988 and 1 at 8 = 7. The relative phase
change per time step (14) for the c303s2 algorithm is plotted in Figure 4(a), also
as a function of the wave number 8 € [0, 7] and the CFL number X € [0,1]. The
most dispersed behaviour is in the limit at = r, and the relative phase change at
§ = « is plotted as a function of A in Figure 4(b). Figure 4(b) shows the relative
phase change per time step varying between approximately 0.9997 and 1.0002 at
6 = n. The amplification factor and relative phase change per time step plots in
Figures 3 and 4 are extraordinary, and show truly ”spectral like” qualities for the
¢303s2 algorithm. Recall from the numerical experiments reported above, that the
c502s2 algorithm is of even higher resolution than the c303s2 algorithm.

6. Linearized Euler Equations in 2D

The algorithms that have been developed in one space dimension have all used
the Method of Characteristics to obtain an exact solution form that propagates a
local spatial inerpolant. The Method of Characteristics cannot be used in multiple
space dimensions for nondiagonalizable hyperbolic systems. We will consider the
linearized Euler equations in two space dimensions in order to indicate an approach
for developing exact local propagators in multiple space dimensions. Consider the
linearized Euler equations for the nondimensionalized isentropic case,

du Ou Ou Op

at+Ua +VE+6 =0,

v Ov av ap

at+Ua Vot =0 (15)
op o  Ou Ov_

3t+U 3y a +ay—0’

where (U, V) is the constant mean convection velocity in Mach number, p is the
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pressure disturbance, and (u, v) is the velocity disturbance. This two dimensional
system is nondiagonalizable, with wave propagation along characteristic surfaces.

We will briefly describe the development of a second order explicit algorithm
for (15) on a symmetric 3 x 3 stencil. A second order local interpolant to u in z
and y at t, can be written as

u(z; + z,y; + ¥, ta) = ua(z, Y) =uo0 + Y30z + u2,032

+(uo + 1,17 + uz12%)y (16)
+Huoz + v1,27 + uz22%)y?,
with similar interpolants for v and p. The expansion coefficients are simultaneously

obtained by the Method of Undetermined Coefficients, and can be interpreted as
spatial derivatives, with

1 8°*Pua 1 §°thu .
bt = i azeon? ~ B oz ) an

Notice that there are up to fourth order cross derivative terms in the interpolant
(16). Exact polynomial solution forms for the linearized Euler equations (15) can
be derived by substituting the expansion forms

2 4

u(xi +z,y; +y, ta + t) ~ “a(za Y, t) = E E ua,ﬁ,‘vzaypt‘ra
a,f=0 v=0

2 4
v(z; + 2,y + ¥, ta +t) = va(z,y,t) = z z vﬁ,ﬁﬁzayﬁt‘y’ (18)
a,pf=0 r=0

2 4
P(-Ti +z,¥; +y, ta + t) ~ Pa(za Y, t) = z Zpﬂgﬁﬂzayﬁt.’)
a,f=0 r=0

into system (15), and obtaining all the terms with 4 # 0 by requiring system (15)
to be satisfied for all z, y and ¢. Coefficients with v # 0 are equivalent to time
derivatives, and the resulting polynomial solutions are expressed entirely in terms
of the spatial expansion coefficients. Note that there will be third and fourth or-
der time terms present in the exact propagator solution forms. This procedure
for obtaining an exact solution form is equivalent to the Cauchy-Kowaleskaya pro-
cedure [6]. The exact polynomial solution forms from (18) give exact propagator
algorithms with correct multidimensional wave dynamics for the local spatial inter-
polants (16) as initial data. Since a biquadratic interpolant is used, the resulting
algorithm will have O[h? + k?] truncation error, and it is dispersive. This pro-
cedure has been used with other symmetric stencils and interpolants to produce
algorithms with fourth and sixth order accuracy in both space and time (see [3] for
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details). Because a local exact propagator is used to develop these algorithms, the
correct propagation of information along characteristic surfaces is automatically
incorporated in the local appraximation of the solution, so that this approach can
be said to generalize the Method of Characteristics to nondiagonalizable systems
in multiple space dimensions.

We have implemented new boundary conditions developed by Hagstrom [5)
as algorithms that are compatible with our propagation methods for the linearized
Euler equations in two space dimensions. Hagstrom actually provides a sequence
of local approximations on the artifical boundary that are defined by a variable
number of auxiliary functions. Each of the approximate problems are strongly well
posed, and the approximate solutions converge exponentially to the exact solution
on the open domain as the number of auxiliary functions increases [5]. As an
example of these boundary conditions, consider the case of a subsonic mean flow
in the positive z direction, with normal Riemann variables r = u+p and | =u—p.
The function r is outgoing at an artifical boundary on the right, and is viewed
as being defined on the interior and the surface, while the function [ is incoming
and is viewed as being defined only on the surface. The boundary surface values
of r and v are obtained essentially in the same way as the outgoing Riemann
variables in the one dimensional case considered above, with the algorithm forms
being interpreted as Cauchy-Kowaleskaya expansions in space and time, and all
relevant solution values obtained over a common boundary stencil. The function
| is obtained with auxiliary functions f; and g;, from the system

ol al v
§+VE-U%+;(L‘+9:‘)=0,
f: af; B; 8%l -

o0; _, 005 _82(-1)
o oy 2 oy

where aj = V1 - U? oos(;,ﬁ_—l) +V,and §; = —;;gi sin’(z,i’_',_l). Note that sys-
tem (19) is forced by the interior solution propagating across the artifical boundary
in the form of the 2% term in the equation for /, and the 91? terms in the equations
for the auxiliary functions. Note also that this boundary system does not require
assumptions about solution form or source location. In practice, we have used
this condition with disturbance data entirely contained within the computational
domain, and with boundary data initialized as 0. Similar systems are defined on
the left hand artifical boundary (see [4], [5] for details). Boundary condition (19)
and its left hand analog have been implemented in both second and fourth order
algorithms, and numerical experiments with m = 2 auxiliary functions have shown

no visible evidence of reflection (see [4] for details).
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7. Conclusions

Single step methods with high order accuracy in both space and time are shown
and compared. A particular class of methods using Hermitian interpolation on
alternating grids has shown both high order accuracy and spectral like high res-
olution. The high order and high resolution methods are more efficient than the
less accurate methods by orders of magnitude, even though the high order and
high resolution methods are considerably more complex. Calculation to the “far
field” can be redefined as propagation to more than O[10%] wavelengths or periods.
Both high order accuracy and high resolution methods are required to compute to
a true far field, with an example algorithm producing O[10™*] errors after 5 x 10°
periods of propagation with eight grid points per wavelength. Algorithms for the
linearized Euler equations in 2D are discussed, with propagation along characteris-
tic surfaces, which generalizes the Method of Characteristics to nondiagonalizable
Hyperbolic systems. Unobtrusive artificial boundary conditions are indicated.
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Figure 1: Maximum Error by the Number of Grid Points per Wavelength.
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Figure 2: Maximum Error by the Total Number of Multiplications.
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c 303s2 Algorithm Amplific ation Factor
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Figure 3(a): Amplification Factor for the c303s2 Algorithm.
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Figure 3(b): Amplification Factor at 6 = x for the c3032 Algorithm.

14



¢ 303s2 Algorithm Relative Phase Change per Time Step
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Figure 4(a): Relative Phase Change for the c30362 Algorithm.
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Figure 4(b): Relative Phase Change at 6 = x for the c30362 Algorithm.
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